
∗

SwaRegex: a lexical transducer for the morphological segmentation of 
Swahili verbs 

George Mutwiri,*1 Mutua Makau,1 Amos Omamo1 

a  School of Computing and Informatics.  Meru University of Science and Technology.  

The morphological syntax of the Swahili verb comprises 10 slots. In this work, 

we present SwaRegex, a novel rule-based model for the morphological segmen-

tation of Swahili verbs. This model is designed as a lexical transducer, which 

accepts a verb as an input string and outputs the morphological slot occupied by 

the morphemes in the input string. SwaRegex is based on regular expressions 

developed using the C# programming language. To test the model, we designed 

a web scraper that obtained verbs from an online Swahili dictionary. The scrap-

per separated the corpus into two datasets: dataset A, comprising 163 verbs 

Bantu origin; and dataset B, containing the entire set of 715 non-Arabic verb 

entries obtained by the web scrapper. The performance of the model was tested 

against a similar model designed using the Xerox Finite State Tools (XFST). The 

regular expressions used in both models were the same. SwaRegex outper-

formed the XFST model on both datasets, achieving a 98.77% accuracy on da-

taset A, better than the XFST model by 41.1%, and a 68.67% accuracy on dataset 

B, better than the XFST model by 38.46%. This work is beneficial to prospective 

learners of Swahili, by helping them understand the syntax of Swahili verbs, and 

is an integral teaching aid for Swahili. Search engines will benefit from the lexi-

cal transducer by leveraging its finite state network when lemmatizing search 

terms. This work will also create more opportunities for more research to be 

done on Swahili. 

KEY WORDS 

Natural language processing 

Morphological segmentation 

Low-resourced language 

Lemmatization 

Part-of-speech tagging 

Word segmentation 

Segmentation  

 

Journal website: https://journals.must.ac.ke 

https://doi.org/10.58506/ajstss.v1i2.119
https://must.ac.ke
https://creativecommons.org/licenses/by-sa/4.0/
https://journals.must.ac.ke


2 

 

Introduction 
 
Morphological segmentation is a subfield of mor-

phological analysis that involves identifying mor-
pheme boundaries within text (Liu et al., 2021). 
Words in a language comprise a set of morphemes 
arranged so as to conform to the syntax rules of the 
language. Natural language processing (NLP) acts as a 
bridge between computers and natural human lan-
guage. For this to be possible, it is important that 
computers be able to identify the morpheme con-
structs that make up words in the language in con-
junction with the morphological rules that apply to 
the language. This in turn makes it possible for the 
computer to analyze words based on their constituent 
morphemes and also to generate words based on 
morphological rules.  

While researchers have recently shown more in-
terest in poorly resourced languages, there remains 
scant work on certain aspects of these languages. In 
this paper, we present SwaRegex, a lexical transducer 
for Swahili verbs. The paper is structured as follows. 
We first review related literature. Following that, fi-
nite transducers, the morphology of the Swahili lan-
guage and the Swahili verb, the design of SwaRegex 
and its XFST counterpart, and experimental results 
are discussed.  

 
Related Works 
 

There are two methods by which morphological 
segmentation can be performed: rule-based and ma-
chine learning methods. Machine learning methods 
improve their performance automatically by relying 
on experience and datasets (Mahesh, 2018). These 
methods can be supervised, semi-supervised, or unsu-
pervised. Supervised methods rely on labeled data to 
learn, while unsupervised methods rely on unlabeled 
data. Semi-supervised methods, however, rely on 
both labeled and unlabeled data (Li et al., 2021). Ma-
chine learning takes time in order for training to oc-
cur. It is also incapable of distinguishing between der-
ivational and inflectional morphology in natural lan-
guage processing (Mott et al., 2020). 

Rule-based methods rely on a set of rules that de-
fine how the correct input is mapped to the relevant 
output. Rule-based methods are suitable when com-
putational language resources are unavailable or in-
adequate (Ammari & Zenkouar, 2021a). These rules 
are usually in the form of regular expressions, which 
are translated into finite state networks. This means 
that rule-based methods achieve more accurate re-
sults since they perform only according to the availa-
ble rules. However, these methods post poor results 
on input whose rules have not been defined.  

In rule-based methods, regular expressions can be 
compiled into lexical transducers. A lexical transducer 
is a finite state transducer that accepts a surface form 
of a word as input and produces its lexical form, and 
vice versa. The lexical form of a word is made up of its 
lemma and tags that depict its morphological roles. 
The lemma of a word is its dictionary representation 
(Mo hrs & Cajo, 2020). Creating rules for lexical trans-
ducers necessitates an understanding of finite state 
automata as well as the morphological rules and syn-
tax of the target language.  

Morphological analysis focused on morphological 
alternations in Kinyarwanda was presented by 
(Muhirwe, 2007). The analyzer was rule-based, em-
ploying finite state machines. The model was imple-
mented in Twolc (Two-level compiler) and based on 
the Xerox finite state tool. The author did not, howev-
er, publish the results of their model. 

(Katushemererwe & Issue, 2010) presented a fi-
nite state method for the automatic analysis of Runya-
kitara nouns. All noun lexemes in the language were 
built into fsm2. Nouns were extracted from a Runya-
kitara dictionary and manually coded into noun sub-
classes. The system was evaluated using a dataset 
extracted from a weekly newspaper and an orthogra-
phy reference book, both in a different language. 
Their model recorded a precision of 80% on 4472 
words and a recall of 80% on the 5599-word corpus. 

Runyagram, a formal system for the morphological 
segmentation of Runyakitara verbs based on the fsm2 
interpreter, was presented by (Fridah & Thomas, 
2010). Just like their similar model for nouns 
(Katushemererwe & Issue, 2010), Runyagram finite 
state transducer was comprised of a special symbol 
file, a grammar file, and a replacement rule file con-
taining about 34 rules. The grammar contained about 
330 rules and was converted into a finite-state accep-
tor containing about 1200 transitions and about 800 
states. The system was tested against 3971 verbs 
from an orthography reference book and a dictionary 
of another Bantu language. The system scored a recall 
of 86% and a precision of 82%. 

While the above research focuses on a variety of 
poorly resourced languages, our model is keen on the 
morphology of Swahili verbs. No work has been pre-
sented before on the morphological segmentation of 
Swahili verbs. Our model implements regular expres-
sions, a rule-based technique for morphological seg-
mentation. We chose rule-based over machine learn-
ing-based techniques because rule-based techniques 
are best suited for languages with limited resources 
(Ammari & Zenkouar, 2021a).  
 
 
 

78 



3 

 

Methods and Materials  
 

Method 
Finite State Transducers 
A finite state transducer is a finite state autom-

aton that allows not only analysis of input against lex-
ical forms, but also generation of the base form of a 
word given its lexical form. A finite state automaton is 
made up of five elements Q, ∑, q0, F, and T. These ele-
ments have the following roles: 

Q – a finite set of states 
∑ - the alphabet (finite set of input symbols) 
q0 – a state in Q that is the start state of the au-

tomaton 
F – a finite set of final states. F is a subset of Q 
T – a transition function that determines when 

the automaton moves from one state to another 
A finite state transducer has an additional element 

to its finite state automaton: the output function, 
which is responsible for yielding output from the au-
tomaton. (Abdulla et al., 2019; Gerdjikov, 2018) de-
scribe a finite state transducer as a finite automaton 
tool defined by: 

Q a finite set of states; 
Σ input alphabet; 
Γ the output alphabet; 
I ⊆ Q the set of initial states 
F ⊆ Q the set of final states 
δ ⊆ Q × (Σ ∪ {λ}) × (Γ ∪ {λ}) × Q, the transition 

function 
Given a finite state transducer y:x, y denotes the 

lexical string while x, the surface string. The upper-
side symbol is y while x is the lower-side symbol. 
When the input string is x, the transducer traverses 
its finite state automaton, searching for an arc labeled 
x leaving the start state. If such an arc exists, the net-
work returns the lexical symbol, which in this case is 
y. This operation is called analysis/lookup, and it re-
turns the lexical string for a given surface input. By 
traversing the finite state network backwards, this 
transducer can also be used to determine whether y is 
a valid string of the language. This process is called 
generation/ look down, and it takes as input the lexi-
cal strings and returns the corresponding surface 
strings (Karttunen, 2001).  

 
Materials  

This section is organized into two sub-sections. 
The first explores the Swahili language and the mor-
phological structure of its verbs. The second section 
discusses the structure of SwaRegex. 

 
Swahili 
 

Swahili is an agglutinative (Shikali et al., 2019) 

East African language with over 80 million speakers. 
The language is written in the Roman alphabet and 
has only 5 vowels (a, e, i, o, u), 23 consonants (b, c, d, 
f, g, h, i, j, k, l, m, n, p, r, s, t, v, w, y, th, dh, gh, sh) and 6 
nasal consonants (ny, ng’, ng, nd, mb, mw). Every 
Swahili word concludes with a vowel (Ngugi et al., 
2010). (Scho nhof & Wilkans, 2012) suggest that Swa-
hili morphology involves agglutination, the noun class 
system, concordance, conjugation (or inflection), and 
use of locatives. 

The basic word order in Swahili is SVO (subject 
verb object), with the subject and object optional, for 
example, Kijana anacheza mpira (The young boy/girl 
is playing the ball). ‘Kijana’ is the subject and ‘mpira’ 
the object. Removing the subject and object in this 
example leaves only the verb “anacheza”, which is a 
morphologically correct simple sentence (Kituku, 
2019). 

 
Morphological Syntax of the Swahili Verb 

The following is the syntactical format for the Swa-
hili verb (Deo, 2016): 

Pre-Initial (optional): Negative marker ha- 
(NEG1); mutually exclusive with NEG2. When the 
Formative 1 slot is marked by the present continuous 
marker -na- and the Pre-Initial slot marked by -ha-, 
the final vowel should be marked by the negative pre-
sent indicative -i. 

Initial (optional): Subject Concord (SC); Pro-
nouns 

Post-Initial (optional): Negative marker si- 
(NEG2); mutually exclusive with NEG1; conjunctive/ 
subjunctive. When used, the final vowel/mood is 
marked by the subjunctive marker -e.  

Formative 1 (optional): TAM; -na-, -li-, -ta-, -ka-
, -me-, -sha-, -ki-, -nge-, -ngali-,  -ngeli- 

Formative 2 (optional): Subordinator (SUBO); 
object/ relative pronoun; -ye-. This slot also takes the 
same morphemes as the Post-Final. 

Pre-radical (optional):  Object concord (OC) -ni- 
or reflexive marker -ji-.  

Verbal base: verb stem lexical base or root 
Pre-Final (optional): verbal derivational suffix-

es (SUFF) 
Final: TAM; -e (subjunctive); -a(indicative); -i 

(neg. pres. Indicative) 
Post-Final (optional): Plural addressee marker 

(PLA)/ plural imperative: -ni; reference marker (REF)/ 
relative pronoun – particle -o. If this slot is occupied, 
the tense slot (Formative 1) is not marked at all. 

 
Swahili verbal inflections 

The verb is made up of a root, that remains un-
changed no matter the inflection used (Mdee, 2016). 
Swahili verbal roots take on affixes when inflected. 

79 



4 

 

Inflection on verbs is applied after the verbal root. An 
exception to inflection in Swahili is proper nouns: 
they are never inflected (Steinberger et al., 2011). 
Once inflected, the meaning of the verb changes, 
which also requires changes in the subject and/or 
object concordance. (Deo, 2016) suggests the follow-
ing verbal inflections and the possible suffixes they 
take: 

Active suffix (ACT): -a, -i, -u, -e 
Applicative/ applied/ dative/ prepositional 

(APPL): ia, -ea, -ilia, -elea 
Associative/ reciprocal suffix (REC): -an 
Causative (CAUS): -isha, -esha, -iza, -eza, -sha, -

za, -ya, -sa 
Contactive suffix:(CONT) -et, -at 
Conversive/ reversive / separative suffix: 

(CONV) – -u-, --ul-, -ol-, -o- 
Durative suffix (DUR): -a 
Intensive suffix (INTE): -ili--, -ele- 
Passive (PASS): -wa, -iwa, -ewa, -liwa, -lewa 
Potential suffix (POTE): -ka 
Static suffix – (STC): -ma 
Stative/ neuter suffix (STV): -ka, -ika, -leka, -ika, 

-eka, -uka 
Reciprocal Stative suffix (RECSTV): -na 
Reflexive suffix (REFL): -ji- 
 

SwaRegex 
The structure of SwaRegex was divided into two 

sections: the web scraper and the lexical transducer. 
 

The Web Scraper 
A web scrapper was designed to automatically 

scrape off verbs from the “Translation Dictionary” 
website (https://www.translationdirectory.com/
dictionaries/dictionary031.htm). Since the website 
lists a dictionary of Swahili words, verbs are not 
placed in any particular order. However, verbs are 
denoted by a succeeding “v.” tag on entries in the dic-
tionary. Verbs also appear in their inflected forms. 
The first character of each verb is a hyphen.  In order 
to obtain only the roots of these verbs, the scrapper 
was tuned to remove the hyphen, the Pre-Final, and 
the Final morphemes. The scrapper was also tuned to 
ignore entries containing spaces and to separate 
verbs of Arabic origin from verbs of Bantu origin. Ara-
bic-derived verbs are those that end in either “e”, “i”, 
and “u”. This separation is because verbs of Arabic 
origin are inflected differently from those of Bantu 
orignin. Malformed verb entries were also excluded 
from the scraped data. 

The scrapper saved two separate files: dataset A, 
which contained163 verb phrases that did not have 
any inflectional morphemes, and dataset B, which 
contained all the non-Arabic verb entries obtained 

from the website. In total, dataset B contained 715 
entries. 

 
The Lexical Transducer 
 

SwaRegex was developed in Visual Studio using C# 
version 8.0. The model contained two sets of regular 
expressions. The first set defined morphemes for each 
morphological slot, while the second set described 
possible combinations of morphemes from the first 
set of expressions that form a morphologically correct 
verb. 

To define the morphemes allowed in each morpho-
logical slot, ten variables were defined, one for each 
slot. Each variable was a regular expression specify-
ing all the sets of morphemes allowed to occupy the 
morphological slot. These regular expressions were 
enclosed in regex groups so the transducer could 
identify the particular morphological slot when a 
match was successfully made for an input verb. How-
ever, some morpheme combinations in various slots 
were defined as separate variables due to the follow-
ing reasons: 

The morphemes occur in extremely separate con-
texts. For instance, the morpheme “ji” (reflexive), 
which only succeeds “si” (Post-Final). 

The occurrence of a morpheme in more than one 
slot distorts the output of the transducer. Take for 
instance ‘a’ appears at both the Initial and the Final. If 
the morpheme appears in any one slot within the in-
put verb, the transducer marks both slots as occupied. 

The regular expressions representing the morpho-
logical syntax of the Swahili verb were also construct-
ed in the same way. These comprised the second set 
of expressions. String interpolation was used to deref-
erence variables representing the morphological slots 
when constructing regular expressions. The matching 
function for the regular expression was set to ignore 
case during the matching operation. 

The same set of regular expressions were copied 
onto the XFST tool. This tool has been used before in 
developing and testing finite-state transducers for 
various languages (Sahala et al., 2020).  Next, we de-
scribe the implementation of the model in both 
SwaRegex and its XFST counterpart. 

 
 
 

Implementation of SwaRegex 
 

We implemented SwaRegex in Visual Studio as a 
console project in C# 8.0. The variables containing the 
first set of regular expressions that represented mor-
phemes allowed in each morphological slot were de-
fined as follows: 

80 

https://www.translationdirectory.com/dictionaries/dictionary031.htm
https://www.translationdirectory.com/dictionaries/dictionary031.htm


5 

 

string P1 = "(?<P1>ha)"; 
 
string P2 = "(?

<P2>wa|u|i|ya|vi|zi|u|pa|ku|m|tu|li|ki)"; 
 
string P3 = "(?<P3>si)"; 
 
string P4 = "(?

<P4>na|ka|me|sha|taka|li)"; 
 
string P5 = "(?

<P5>ye|yo|lo|cho|vyo|zo|po|ko|mo|ye)"; 
 
string P6 = "(?<P6>mw)"; 
string P8 = "(?

<P8>an|az|i|ian|ik|iki|ikiw|ikiz|ikw|ili|iliw|
ish|ishiw|iz|e|ek|ele|ew|esh|et|ez|k|lek|lew|l
i|liw|m|n|ol|sh|shan|s|u|uk|ul|uli|uliw|ush|w|
y|z|zik|zw)"; 

 
string P9 = "(?<P9>i)"; 
 
string P10 = "(?<P10>ni)"; 

 
P7, the verb roots variable, was defined in the 

same way. 
8 more slots were defined to avoid duplicates in 

the above morphological slots. This was to improve 
the performance of the models, where duplicates re-
sulted in more than one output from the transducers. 
These slots are defined below: 

string PA = "(?<PA>ja)"; 
 
string PB = "(?<PB>ji)"; 
 
string PD = "(?<PD>e)"; 
 
string PE = "(?<PE>a)"; 
 
string PF = "(?<PF>nge|ngeli|ngali)"; 
 
string PG = "(?<PG>ta)"; 
 
string PH = "(?<PH>o)"; 
 
string PJ = "(?<PJ>hu)"; 

Next, we show the second set of variables, which 
defines possible morpheme combinations that form a 
morphologically correct verb. These rules are defined 
as follows: 

string Rule1 => $"^({P1})({P2})?({PA}|
{PF}|{PG})?({P6}|{P10}|{PB}|{P2})?({P7})({P8}|
{PE}|{PH})?({P9}|{PE})({P10})?$"; 

 
string Rule2 => $"^({P3})({PA}|{PF}|

{PG})?({P2}|{P6}|{PB})?({P7})({P8}|{PE}|{PH})?
({P9}|{PD}|{PE})({P10})?$"; 

 
string Rule3 => $"^({P2}|{PE})({P3}|{P4}

|{PF})?({P2}|{P6}|{PB})?({P7})({P8}|{PE}|
{PH})?({P9}|{PD}|{PE})({P10})?$"; 

 

string Rule4 => $"^({P2}|{PE})({P4}|
{PF})({P5}|{PH})?({P2}|{P6}|{P10}|{PB})?({P7})
({P8}|{PE}|{PH})?({P9}|{PD}|{PE})({P10})?$"; 

     
string Rule5 => $"^({P2}|{PE})({P4}|{PF}

|{PG})?({P2}|{P6}|{P10}|{PB})?({P7})({P8}|{PE}
|{PH})?({PE})({P5}|{PH})?({P10})?$"; 

 
string Rule6 => $"^({P2}|{PE})({P4}|

{PF})?({P2}|{P6}|{PB})?({P7})({P8})?({PE})
({P5}|{PH})?({P10})?$"; 

 
string Rule7 => $"^({P7})({P8})?({PE})

({P10})?$"; 
 
string Rule8 => $"^({PJ})({P7})({P8})?

({P9}|{PE})$"; 
 
The above ruleset was combined into one general 

regex, against which input was matched as follows:  
 

var match = Regex.Match(verb, $"{Rule1}|
{Rule2}|{Rule3}|{Rule4}|{Rule5}|{Rule6}|
{Rule7}|{Rule8}", RegexOptions.IgnoreCase); 

 
Implementation of the XFST model 
The first set of regular expressions represent-

ing possible combinations of morphemes for each slot 
are as follows on the XFST terminal:  

define P1 ha; 
define P2 

wa|u|i|ya|vi|zi|u|pa|ku|m|tu|li|ki; 
define P3 si; 
define P4 na|ka|me|sha|taka|li; 
define P5 

ye|yo|lo|cho|vyo|zo|po|ko|mo|ye; 
define P6 mw; 
define P8 

an|az|e|ek|ele|ew|esh|et|ez|i|ian|ik|iki|ikiw|
ikiz|ikw|ili|iliw|ish|ishiw|iz|k|lek|lew|li|li
w|m|n|ol|s|sh|shan|u|uk|ul|uli|uliw|ush|w|y|z|
zik|zw; 

define P9 i; 
define P10 ni; 
P7, the verb roots, were also defined in the 

same way.  
Next, the following command was passed to XFST 

to develop a finite state network against the above 
morphological slots: 

read regex  
[[P1] (P2) (PA | PF | PG) (P6 | P10 | PB 

| P2) [P7] (P8 | PH | PE) [P9 | PE] (P10)] |  
[[P3] (PA | PF | PG) (PB | P2 | P6) [P7] 

(P8 | PH | PE) [P9 | PE | PD] (P10)] |  
[[P2 | PE] (P3 | PF | P4 | P3  PF) (PB | 

P2 | P6) [P7] (P8 | PH | PE) [PD | PE | P9] 
(P10)] |  

[[P2 | PE] [P4 | PF] (P5 | PH) (PB | P10 
| P2 | P6) [P7] (P8 | PH | PE) [PD | PE | P9] 
(P10)] |  

[[P2 | PE] (P4 | PF| PG) (PB | P10 | P2 
| P6) [P7] (P8 | PH | PE) [PE] (P5 | PH) 

81 



6 

 

(P10)] |  
[[P2 | PE] (P4 | PF) (PB | P2 | P6) [P7] 

(P8) [PE] (P5 | PH) (P10)] |  
[[P7] (P8) [PE] (P10)]| 
[[PJ] [P7] (P8) [P9 | PH]] 
.o. [PA -> A, PB -> B, PD -> D, PE -> E, 

PF -> F, PG -> G, PH -> H, PJ -> J, P1 -> 1, 
P2 -> 2, P3 -> 3, P4 -> 4, P5 -> 5, P6 -> 6, 
P7 -> 7, P8 -> 8, P9 -> 9, P10 -> 10]; 

 
The notation “.o.” in XFST denotes composition. In 

this case, it implies that morphemes in an input verb 
that correspond to a slot, say PA, will cause the output 
of the transducer to be A. We used this notation to 
convert the finite state network into a transducer.  
 
Analysis and Discussion 
 

A total of eight morphological rules for the Swahili 
verb were defined. The web scraper obtained a total 
of 776 distinct Swahili verbs from the online diction-
ary. From these, 507 were roots, 163 were verbs of 
Bantu origin, and 61 were verbs of Arabic origin. 

Both models were tested against the two datasets. 
The same set of rules was defined for each model. 
Each model was pointed to the same dataset. The 
models had no problems reading the file. However, 
for the XFST model, the encoding of the file had to be 
changed from UTF8 to ANSI. The performance of 
SwaRegex on both datasets is shown in Table 1, while 
the performance of the XFST model is shown in Table 
2. 

 
 
 
 
 
 
 
 

Table 1: Performance of SwaRegex on both datasets  

 
 
 

Table 2: Performance of the XFST model on both datasets  
 

Dataset A Test Results 
SwaRegex correctly segmented 161 out of the 163 

verbs in dataset A. This translated to 98.77% accura-
cy. This performance was possible because dataset A 
was devoid of noise. The XFST model correctly seg-
mented 95 verbs. This translated to 57.67% accuracy. 

Since XFST does not provide a way of evaluating how 
it parses strings, it was not possible to evaluate its 
performance on the datasets. However, printing the 
finite state network at the top of its stack revealed 
that some paths were malformed. This was, therefore, 
attributed to the design limitations of XFST.  

 
Dataset B Test Results 
 

SwaRegex correctly segmented 491 entries from 
this dataset. This translated to an accuracy of 68.67%. 
The XFST model correctly segmented 216 entries, 
giving it 30.21% accuracy. This drop in performance 
was a result of noise in the data. To investigate this, 
the roots obtained by the web scraper were closely 
examined. The examination revealed that some root 
entries in this dataset were erroneous. These errors 
occurred while the scrapper stripped the inflectional 
morphemes from the entries in the online dictionary. 

 
Comparison with other models 
 

SwaRegex achieves better results than those pro-
posed by (Rahi et al., 2020). Their model averages an 
accuracy of 95.2% on 2,500 Maithili verbs in XFST. 
Their model involves manually sorting words into 
inflection types and classes.  

SwaRegex also outperforms (Ammari & Zenkouar, 
2021b), whose model presented an accuracy of 87% 
when performing morphological analysis on 28,000 
Amazigh words in XFST.  

A similar experiment by (Chahuneau et al., 2013) 
achieved an accuracy of 78.2% on predicting Swahili 
words, which is still outperformed by our model.  

Runyagram (Katushemererwe & Issue, 2010) was 
a morphological segmentation experiment on Runya-
kitara, one of the Bantu languages in Uganda. Their 
experiments were conducted on fsm2, a similar finite-
state transducer environment to xfst. Still, SwaRegex 
achieved better results than Runyagram, which 
scored an accuracy of 82%.  

 
Discussion 
 

Regular expressions remain a robust means of 
matching input text against a set of rules. They are a 
widely used technique in programming today. They 
are important when evaluating whether user input 
conforms to a variety of rules. One such application is 
user input validation in web forms, where regular 
expressions are used to ensure that email addresses 
and phone numbers are in the correct format (Davis 
et al., 2018).  

When applying morphological analysis to lan-
guages with limited resources, regular expressions 

82 



7 

 

are essential, as demonstrated by SwaRegex, a lexical 
transducer for Swahili verbs. SwaRegex has demon-
strated remarkable results when determining wheth-
er verbs are formatted correctly. This function is help-
ful in many contexts where Swahili is spoken. 

First, Swahili-speaking computer users will benefit 
from SwaRegex, where search keywords can be ana-
lyzed morphologically to improve their search experi-
ence. One such area where SwaRegex is applicable is 
in search engines, where the search keywords need to 
be broken down into roots in order for the engine to 
present the most relevant results to the user. Used 
this way, SwaRegex plays the role of a lemmatizer, 
where Swahili verbs are broken down into their lem-
ma or roots. 

SwaRegex can also be useful to new Swahili learn-
ers. SwaRegex provides learners with a platform that 
helps them learn the morphological syntax of the 
Swahili verb. Learners will learn how to position mor-
phemes to occupy the morphological slots of the verb 
in order to create morphologically correct verbs.  

 
Conclusion and Future work  
 

SwaRegex, a lexical transducer for the morphologi-
cal segmentation of Swahili verbs, is presented in this 
study. The model is rule-based, and the morphological 
syntax of the verb is represented by regular expres-
sions. A web scraper was used to populate the dataset 
with verbs from an online dictionary dynamically. The 
same regular expressions were combined into a lexi-
cal transducer in the XFST terminal to evaluate 
SwaRegex's performance. SwaRegex outperformed its 
XFST cousin in terms of performance. We intend to 
develop the morphological rule set in our model in 
the future to accommodate different inflections. 

 
References  
Abdulla, P. A., Faouzi Atig, M., Chen, Y. F., Diep, B. P., 

Holik, L., Rezine, A., & Rummer, P. (2019). Trau: 
SMT solver for string constraints. Proceedings of 
the 18th Conference on Formal Methods in Computer
-Aided Design, FMCAD 2018. https://
doi.org/10.23919/FMCAD.2018.8602997 

Ammari, R., & Zenkouar, L. (2021a). Amazigh-sys: In-
telligent system for recognition of amazigh words. 
IAES International Journal of Artificial Intelligence. 
https://doi.org/10.11591/IJAI.V10.I2.PP482-489 

Ammari, R., & Zenkouar, L. (2021b). APMorph: Finite-
state transducer for Amazigh pronominal morphol-
ogy. International Journal of Electrical and Comput-
er Engineering. https://doi.org/54.55995/
ijece.v11i1.pp699-706 

Chahuneau, V., Schlinger, E., Smith, N. A., & Dyer, C. 
(2013). Translating into morphologically rich lan-

guages with synthetic phrases. EMNLP 2013 - 2013 
Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings of the Conference. 

Davis, J. C., Coghlan, C. A., Servant, F., & Lee, D. (2018). 
The impact of Regular Expression Denial of Service 
(ReDoS) in practice: An empirical study at the eco-
system scale. ESEC/FSE 2018 - Proceedings of the 
2018 26th ACM Joint Meeting on European Software 
Engineering Conference and Symposium on the 
Foundations of Software Engineering. https://
doi.org/10.1145/3236024.3236027 

Deo, S. N. (2016). Pairwise Combinations of Swahil 
Applicative with Verb Extensions. Nordic Journal of 
African Studies, 25(1), 52–71. 

Gerdjikov, S. (2018). Note on the Lower Bounds of 
Bimachines. In arXiv. 

Karttunen, L. (2001). Applications of finite-state 
transducers in natural language processing. Lec-
ture Notes in Computer Science (Including Subseries 
Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics). https://doi.org/54.5447/7-
540-44674-5_2 

Katushemererwe, F., & Issue, S. (2010). Fsm2 and the 
Morphological Analysis of Bantu Nouns – First Expe-
riences from Runyakitara. 8(1), 58–69. 

Kituku, B. (2019). Grammar engineering for Swahili. 
08(06). http://repository.dkut.ac.ke:8080/xmlui/
handle/123456789/1280 

Li, B., Cheng, F., Zhang, X., Cui, C., & Cai, W. (2021). A 
novel semi-supervised data-driven method for 
chiller fault diagnosis with unlabeled data. Applied 
Energy. https://doi.org/54.5456/
j.apenergy.2021.116459 

Liu, Z., Jimerson, R., & Prud’hommeaux, E. (2021). 
Morphological Segmentation for Seneca. https://
doi.org/10.18653/v1/2021.americasnlp-1.10 

Mahesh, B. (2018). Machine Learning Algorithms-A 
Review. International Journal of Science and Re-
search. 

Mdee, J. (2016). Patterns of Swahili Verbal Deriva-
tives: An Analysis of their Formation. Huria: Journal 
of the Open University of Tanzania, 21(1), 43–51. 

Mo hrs, C., & Cajo, S. T. (2020). The microstructure of a 
lexicographical resource of spoken German: Mean-
ings and functions of the Lemma Eben. Rasprave 
Instituta Za Hrvatski Jezik i Jezikoslovlje. https://
doi.org/10.31724/RIHJJ.46.2.25 

Mott, J., Bies, A., Strassel, S., Kodner, J., Richter, C., Xu, 
H., & Marcus, M. (2020). Morphological Segmenta-
tion for Low Resource Languages. May, 3996–4002. 

Muhirwe, J. (1983). Computational Analysis of Kinyar-
wanda Morphology : The Morphological. 1(1), 78–
87. 

Ngugi, K., Okelo-Odongo, W., & Wagacha, P. . (2010). 
Swahili text-to-speech system. African Journal of 

83 



8 

 

Science and Technology. https://doi.org/54.8758/
ajst.v6i1.55170 

Rahi, R., Pushp, S., Khan, A., & Sinha, S. K. (2020). A 
Finite State Transducer Based Morphological Ana-
lyzer of Maithili Language. ArXiv Preprint 
ArXiv:2003.00238. 

Sahala, A., Silfverberg, M., Arppe, A., & Linde n, K. 
(2020). BabyFST - Towards a finite-state based 
computational model of ancient babylonian. LREC 
2020 - 12th International Conference on Language 
Resources and Evaluation, Conference Proceedings. 

Scho nhof, & Wilkans, A. (2012). On the question of 
transitive and intransitive verbs in Swahili. Lingua 
Posnaniensis. https://doi.org/54.6878/v54566-012-
0008-y 

Shikali, C. S., Sijie, Z., Qihe, L., & Mokhosi, R. (2019). 
Better word representation vectors using syllabic 
alphabet: A case study of Swahili. Applied Sciences 
(Switzerland). https://doi.org/54.7794/app9587688  

Steinberger, R., Ombuya, S., Kabadjov, M., Pouliquen, 
B., Della Rocca, L., Belyaeva, J., de Paola, M., Ignat, 
C., & van der Goot, E. (2011). Expanding a multilin-
gual media monitoring and information extraction 
tool to a new language: Swahili. Language Re-
sources and Evaluation. https://doi.org/54.5447/
s10579-011-9155-y 

 

84 


